Home Â» How to Find Z Alpha/2 (za/2)

# How to Find Z Alpha/2 (za/2)

Whenever you come across the term zÎ±/2 in statistics, it is simply referring to theÂ z critical valueÂ from the z table that corresponds to Î±/2.

This tutorial explains the following:

• How to find zÎ±/2 using a z table.
• How to find zÎ±/2 using a calculator.
• The most common values forÂ zÎ±/2.

Letâ€™s jump in!

### How to find zÎ±/2 using a z table

Suppose we want to find zÎ±/2 for some test that is using a 90% confidence level.

In this case, Î± would be 1 â€“ 0.9 =Â 0.1. Thus, Î±/2 = 0.1/2 =Â 0.05.

To find the corresponding z critical value, we would simply look for 0.05 in a z table:

Notice that the exact value of 0.05Â doesnâ€™t appear in the table, but it would be directly between the valuesÂ .0505Â andÂ .0495. The corresponding z critical values on the outside of the table are -1.64 andÂ -1.65.

By splitting the difference, we see that the z critical value would be -1.645. And typically when we use zÎ±/2 we take the absolute value. Thus, z.01/2 = 1.645.

### How to find zÎ±/2 using a calculator

We can also use a Critical Z Value Calculator toÂ find zÎ±/2 for some test.

For example, for some test that is using a 90% confidence level we can simply enter 0.1Â as the significance level and the calculator will automatically return the value ofÂ 1.645 as the corresponding critical z value:

### Common Values for zÎ±/2

The following table displays the most common critical values for different values of Î±:

The way to interpret this table is as follows:

• For a test using a 90% confidence level (e.g. Î± = 0.1), the z critical value isÂ 1.645.
• For a test using a 95% confidence level (e.g. Î± = 0.05), the z critical value is 1.96.
• For a test using a 99% confidence level (e.g. Î± = 0.01), the z critical value is 5.576.

And so on.