*79*

You can use the following syntax to convert a NumPy array into a pandas DataFrame:

#create NumPy array data = np.array([[1, 7, 6, 5, 6], [4, 4, 4, 3, 1]]) #convert NumPy array to pandas DataFrame df = pd.DataFrame(data=data)

The following example shows how to use this syntax in practice.

**Example: Convert NumPy Array to Pandas DataFrame**

Suppose we have the following NumPy array:

import numpy as np #create NumPy array data = np.array([[1, 7, 6, 5, 6], [4, 4, 4, 3, 1]]) #print class of NumPy array type(data) numpy.ndarray

We can use the following syntax to convert the NumPy array into a pandas DataFrame:

import pandas as pd #convert NumPy array to pandas DataFrame df = pd.DataFrame(data=data) #print DataFrame print(df) 0 1 2 3 4 0 1 7 6 5 6 1 4 4 4 3 1 #print class of DataFrame type(df) pandas.core.frame.DataFrame

**Specify Row & Column Names for Pandas DataFrame**

We can also specify row names and column names for the DataFrame by using the **index** and **columns** arguments, respectively.

#convert array to DataFrame and specify rows & columns df = pd.DataFrame(data=data, index=["r1", "r2"], columns=["A", "B", "C", "D", "E"]) #print the DataFrame print(df) A B C D E r1 1 7 6 5 6 r2 4 4 4 3 1

**Additional Resources**

How to Add a Numpy Array to a Pandas DataFrame

How to Drop the Index Column in Pandas

Pandas: Select Rows Where Value Appears in Any Column