*64*

A confidence interval is a range of values that is likely to contain a population parameter with a certain level of confidence.

This tutorial explains how to plot a confidence interval for a dataset in R.

**Example: Plotting a Confidence Interval in R**

Suppose we have the following dataset in R with 100 rows and 2 columns:

#make this example reproducible set.seed(0) #create dataset x #view first six rows of dataset head(df) x y 1 1.2629543 3.3077678 2 -0.3262334 -1.4292433 3 1.3297993 2.0436086 4 1.2724293 2.5914389 5 0.4146414 -0.3011029 6 -1.5399500 -2.5031813

To create a plot of the relationship between x and y, we can first fit a linear regression model:

model

Next, we can create a plot of the estimated linear regression line using the abline() function and the lines() function to create the actual confidence bands:

#get predicted y values using regression equation newx #create plot of x vs. y, but don't display individual points (type='n') plot(y ~ x, data = df, type = 'n') #add fitted regression line abline(model) #add dashed lines for confidence bands lines(newx, preds[ ,3], lty = 'dashed', col = 'blue') lines(newx, preds[ ,2], lty = 'dashed', col = 'blue')

The black line displays the fitted linear regression line while the two dashed blue lines display the confidence intervals.

If youâ€™d like, you can also fill in the area between the confidence interval lines and the estimated linear regression line using the following code:

#create plot of x vs. y plot(y ~ x, data = df, type = 'n') #fill in area between regression line and confidence interval polygon(c(rev(newx), newx), c(rev(preds[ ,3]), preds[ ,2]), col = 'grey', border = NA) #add fitted regression line abline(model) #add dashed lines for confidence bands lines(newx, preds[ ,3], lty = 'dashed', col = 'blue') lines(newx, preds[ ,2], lty = 'dashed', col = 'blue')

Hereâ€™s the complete code from start to finish:

#make this example reproducible set.seed(0) #create dataset x y df #fit linear regression model model #get predicted y values using regression equation newx preds #create plot of x vs. y plot(y ~ x, data = df, type = 'n') #fill in area between regression line and confidence interval polygon(c(rev(newx), newx), c(rev(preds[ ,3]), preds[ ,2]), col = 'grey', border = NA) #add fitted regression line abline(model) #add dashed lines for confidence bands lines(newx, preds[ ,3], lty = 'dashed', col = 'blue') lines(newx, preds[ ,2], lty = 'dashed', col = 'blue')

**Additional Resources**

What are Confidence Intervals?

How to Use the abline() Function in R to Add Straight Lines to Plots